SpringBoot 操作 Redis的各种实现(以及Jedis、Redisson、Lettuce的区别比较)

2021/08/26

以下文章来源于小哈学Java

正文

一、Jedis,Redisson,Lettuce三者的区别

共同点:都提供了基于Redis操作的Java API,只是封装程度,具体实现稍有不同。

不同点:

1.1、Jedis

是Redis的Java实现的客户端。支持基本的数据类型如:String、Hash、List、Set、Sorted Set。

特点:使用阻塞的I/O,方法调用同步,程序流需要等到socket处理完I/O才能执行,不支持异步操作。Jedis客户端实例不是线程安全的,需要通过连接池来使用Jedis。

1.2、Redisson

优点点:分布式锁,分布式集合,可通过Redis支持延迟队列。

1.3、 Lettuce

用于线程安全同步,异步和响应使用,支持集群,Sentinel,管道和编码器。

基于Netty框架的事件驱动的通信层,其方法调用是异步的。Lettuce的API是线程安全的,所以可以操作单个Lettuce连接来完成各种操作。

二、RedisTemplate

2.1、使用配置

maven配置引入,(要加上版本号,我这里是因为Parent已声明)

 <dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency> 

application-dev.yml

 spring:
   redis:
    host: 192.168.1.140
    port: 6379
    password:
    database: 15 # 指定redis的分库(共16个0到15)

2.2、使用示例

@Resource
private StringRedisTemplate stringRedisTemplate;

@Override
public CustomersEntity findById(Integer id) {
    // 需要缓存
    // 所有涉及的缓存都需要删除,或者更新
    try {
        String toString = stringRedisTemplate.opsForHash().get(REDIS_CUSTOMERS_ONE, id + "").toString();
        if (toString != null) {
            return JSONUtil.toBean(toString, CustomersEntity.class);
        }
    } catch (Exception e) {
        e.printStackTrace();
    }
    // 缓存为空的时候,先查,然后缓存redis
    Optional<CustomersEntity> byId = customerRepo.findById(id);
    if (byId.isPresent()) {
        CustomersEntity customersEntity = byId.get();
        try {
            stringRedisTemplate.opsForHash().put(REDIS_CUSTOMERS_ONE, id + "", JSONUtil.toJsonStr(customersEntity));
        } catch (Exception e) {
            e.printStackTrace();
        }
        return customersEntity;
    }
    return null;
}

2.3、扩展

2.3.1、spring-boot-starter-data-redis的依赖包

3.3.2、stringRedisTemplate API(部分展示)
  • opsForHash –> hash操作
  • opsForList –> list操作
  • opsForSet –> set操作
  • opsForValue –> string操作
  • opsForZSet –> Zset操作

3.3.3 StringRedisTemplate默认序列化机制
public class StringRedisTemplate extends RedisTemplate<String, String> {

    /**
     * Constructs a new <code>StringRedisTemplate</code> instance. {@link #setConnectionFactory(RedisConnectionFactory)}
     * and {@link #afterPropertiesSet()} still need to be called.
     */
    public StringRedisTemplate() {
        RedisSerializer<String> stringSerializer = new StringRedisSerializer();
        setKeySerializer(stringSerializer);
        setValueSerializer(stringSerializer);
        setHashKeySerializer(stringSerializer);
        setHashValueSerializer(stringSerializer);
    }
}

三、RedissonClient 操作示例

3.1 基本配置

3.1.1、Maven pom 引入
 <dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<dependency>
    <groupId>org.redisson</groupId>
    <artifactId>redisson</artifactId>
    <version>3.8.2</version>
    <optional>true</optional>
</dependency>
<dependency>
    <groupId>org.redisson</groupId>
    <artifactId>redisson-spring-boot-starter</artifactId>
    <version>LATEST</version>
</dependency> 
3.1.2、添加配置文件Yaml或者json格式

redisson-config.yml

# Redisson 配置

singleServerConfig:
    address: "redis://192.168.1.140:6379"
    password: null
    clientName: null
    database: 15 #选择使用哪个数据库0~15
    idleConnectionTimeout: 10000
    pingTimeout: 1000
    connectTimeout: 10000
    timeout: 3000
    retryAttempts: 3
    retryInterval: 1500
    reconnectionTimeout: 3000
    failedAttempts: 3
    subscriptionsPerConnection: 5
    subscriptionConnectionMinimumIdleSize: 1
    subscriptionConnectionPoolSize: 50
    connectionMinimumIdleSize: 32
    connectionPoolSize: 64
    dnsMonitoringInterval: 5000
    #dnsMonitoring: false
    
threads: 0
nettyThreads: 0
codec:
    class: "org.redisson.codec.JsonJacksonCodec"
transportMode: "NIO" 

或者,配置 redisson-config.json

 {
    "singleServerConfig": {
    "idleConnectionTimeout": 10000,
    "pingTimeout": 1000,
    "connectTimeout": 10000,
    "timeout": 3000,
    "retryAttempts": 3,
    "retryInterval": 1500,
    "reconnectionTimeout": 3000,
    "failedAttempts": 3,
    "password": null,
    "subscriptionsPerConnection": 5,
    "clientName": null,
    "address": "redis://192.168.1.140:6379",
    "subscriptionConnectionMinimumIdleSize": 1,
    "subscriptionConnectionPoolSize": 50,
    "connectionMinimumIdleSize": 10,
    "connectionPoolSize": 64,
    "database": 0,
    "dnsMonitoring": false,
    "dnsMonitoringInterval": 5000
},
"threads": 0,
"nettyThreads": 0,
"codec": null,
"useLinuxNativeEpoll": false
} 
3.1.3、读取配置

新建读取配置类

@Configuration
public class RedissonConfig {

        @Bean
        public RedissonClient redisson() throws IOException {
    
            // 两种读取方式,Config.fromYAML 和 Config.fromJSON
    //        Config config = Config.fromJSON(RedissonConfig.class.getClassLoader().getResource("redisson-config.json"));
    Config config = Config.fromYAML(RedissonConfig.class.getClassLoader().getResource("redisson-config.yml"));
    return Redisson.create(config);
    }
}

或者,在 application.yml中配置如下

 spring:
    redis:
        redisson:
         config: classpath:redisson-config.yaml 

3.2 使用示例

    @RestController
    @RequestMapping("/")
    public class TeController {

        @Autowired
        private RedissonClient redissonClient;

        static long i = 20;
        static long sum = 300;

        //    ========================== String =======================
        @GetMapping("/set/{key}")
        public String s1(@PathVariable String key) {
            // 设置字符串
            RBucket<String> keyObj = redissonClient.getBucket(key);
            keyObj.set(key + "1-v1");
            return key;
        }

        @GetMapping("/get/{key}")
        public String g1(@PathVariable String key) {
            // 设置字符串
            RBucket<String> keyObj = redissonClient.getBucket(key);
            String s = keyObj.get();
            return s;
        }

        //    ========================== hash =======================-=

        @GetMapping("/hset/{key}")
        public String h1(@PathVariable String key) {

            Ur ur = new Ur();
            ur.setId(MathUtil.randomLong(1,20));
            ur.setName(key);
            // 存放 Hash
            RMap<String, Ur> ss = redissonClient.getMap("UR");
            ss.put(ur.getId().toString(), ur);
            return ur.toString();
        }

        @GetMapping("/hget/{id}")
        public String h2(@PathVariable String id) {
            // hash 查询
            RMap<String, Ur> ss = redissonClient.getMap("UR");
            Ur ur = ss.get(id);
            return ur.toString();
        }

        // 查询所有的 keys
        @GetMapping("/all")
        public String all(){
            RKeys keys = redissonClient.getKeys();
            Iterable<String> keys1 = keys.getKeys();
            keys1.forEach(System.out::println);
            return keys.toString();
        }

        // ================== ==============读写锁测试 =============================

        @GetMapping("/rw/set/{key}")
        public void rw_set(){
            //        RedissonLock.
            RBucket<String> ls_count = redissonClient.getBucket("LS_COUNT");
            ls_count.set("300",360000000l, TimeUnit.SECONDS);
        }

        // 减法运算
        @GetMapping("/jf")
        public void jf(){

            String key = "S_COUNT";

//        RAtomicLong atomicLong = redissonClient.getAtomicLong(key);
//        atomicLong.set(sum);
//        long l = atomicLong.decrementAndGet();
//        System.out.println(l);

            RAtomicLong atomicLong = redissonClient.getAtomicLong(key);
            if (!atomicLong.isExists()) {
                atomicLong.set(300l);
            }

            while (i == 0) {
                if (atomicLong.get() > 0) {
                    long l = atomicLong.getAndDecrement();
                    try {
                        Thread.sleep(1000l);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    i --;
                    System.out.println(Thread.currentThread().getName() + "->" + i + "->" + l);
                }
            }


        }

        @GetMapping("/rw/get")
        public String rw_get(){

            String key = "S_COUNT";
            Runnable r = new Runnable() {
                @Override
                public void run() {
                    RAtomicLong atomicLong = redissonClient.getAtomicLong(key);
                    if (!atomicLong.isExists()) {
                        atomicLong.set(300l);
                    }
                    if (atomicLong.get() > 0) {
                        long l = atomicLong.getAndDecrement();
                        i --;
                        System.out.println(Thread.currentThread().getName() + "->" + i + "->" + l);
                    }
                }
            };

            while (i != 0) {
                new Thread(r).start();
//            new Thread(r).run();
//            new Thread(r).run();
//            new Thread(r).run();
//            new Thread(r).run();
     }
    

            RBucket<String> bucket = redissonClient.getBucket(key);
            String s = bucket.get();
            System.out.println("================线程已结束================================" + s);

            return s;
        }

    }

4.3 扩展

4.3.1 丰富的jar支持,尤其是对 Netty NIO框架

4.3.2 丰富的配置机制选择,这里是详细的配置说明

https://github.com/redisson/redisson/wiki/2.-Configuration

关于序列化机制中,就有很多

4.3.3 API支持(部分展示),具体的 Redis –> RedissonClient ,可查看这里

https://github.com/redisson/redisson/wiki/11.-Redis-commands-mapping

4.3.4 轻便的丰富的锁机制的实现

  • Lock
  • Fair Lock
  • MultiLock
  • RedLock
  • ReadWriteLock
  • Semaphore
  • PermitExpirableSemaphore
  • CountDownLatch

四、基于注解实现的Redis缓存

4.1 Maven 和 YML配置

参考 RedisTemplate 配置。

另外,还需要额外的配置类

// todo 定义序列化,解决乱码问题
@EnableCaching
@Configuration
@ConfigurationProperties(prefix = "spring.cache.redis")
public class RedisCacheConfig {

    private Duration timeToLive = Duration.ZERO;

    public void setTimeToLive(Duration timeToLive) {
        this.timeToLive = timeToLive;
    }

    @Bean
    public CacheManager cacheManager(RedisConnectionFactory factory) {
        RedisSerializer<String> redisSerializer = new StringRedisSerializer();
        Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);

        // 解决查询缓存转换异常的问题
        ObjectMapper om = new ObjectMapper();
        om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        jackson2JsonRedisSerializer.setObjectMapper(om);

        // 配置序列化(解决乱码的问题)
        RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig()
                .entryTtl(timeToLive)
                .serializeKeysWith(RedisSerializationContext.SerializationPair.fromSerializer(redisSerializer))
                .serializeValuesWith(RedisSerializationContext.SerializationPair.fromSerializer(jackson2JsonRedisSerializer))
                .disableCachingNullValues();

        RedisCacheManager cacheManager = RedisCacheManager.builder(factory)
                .cacheDefaults(config)
                .build();
        return cacheManager;
    }

}

4.2 使用示例

@Transactional
@Service
public class ReImpl implements RedisService {

    @Resource
    private CustomerRepo customerRepo;
    @Resource
    private StringRedisTemplate stringRedisTemplate;

    public static final String REDIS_CUSTOMERS_ONE = "Customers";

    public static final String REDIS_CUSTOMERS_ALL = "allList";

    // =====================================================================使用Spring cahce 注解方式实现缓存
    // ==================================单个操作

    @Override
    @Cacheable(value = "cache:customer", unless = "null == #result",key = "#id")
    public CustomersEntity cacheOne(Integer id) {
        final Optional<CustomersEntity> byId = customerRepo.findById(id);
        return byId.isPresent() ? byId.get() : null;
    }

    @Override
    @Cacheable(value = "cache:customer", unless = "null == #result", key = "#id")
    public CustomersEntity cacheOne2(Integer id) {
        final Optional<CustomersEntity> byId = customerRepo.findById(id);
        return byId.isPresent() ? byId.get() : null;
    }

    // todo 自定义redis缓存的key,
    @Override
    @Cacheable(value = "cache:customer", unless = "null == #result", key = "#root.methodName + '.' + #id")
    public CustomersEntity cacheOne3(Integer id) {
        final Optional<CustomersEntity> byId = customerRepo.findById(id);
        return byId.isPresent() ? byId.get() : null;
    }

    // todo 这里缓存到redis,还有响应页面是String(加了很多转义符\,),不是Json格式
    @Override
    @Cacheable(value = "cache:customer", unless = "null == #result", key = "#root.methodName + '.' + #id")
    public String cacheOne4(Integer id) {
        final Optional<CustomersEntity> byId = customerRepo.findById(id);
        return byId.map(JSONUtil::toJsonStr).orElse(null);
    }

    // todo 缓存json,不乱码已处理好,调整序列化和反序列化
    @Override
    @Cacheable(value = "cache:customer", unless = "null == #result", key = "#root.methodName + '.' + #id")
    public CustomersEntity cacheOne5(Integer id) {
        Optional<CustomersEntity> byId = customerRepo.findById(id);
        return byId.filter(obj -> !StrUtil.isBlankIfStr(obj)).orElse(null);
    }



    // ==================================删除缓存
    @Override
    @CacheEvict(value = "cache:customer", key = "'cacheOne5' + '.' + #id")
    public Object del(Integer id) {
        // 删除缓存后的逻辑
        return null;
    }

    @Override
    @CacheEvict(value = "cache:customer",allEntries = true)
    public void del() {

    }

    @CacheEvict(value = "cache:all",allEntries = true)
    public void delall() {

    }
    // ==================List操作

    @Override
    @Cacheable(value = "cache:all")
    public List<CustomersEntity> cacheList() {
        List<CustomersEntity> all = customerRepo.findAll();
        return all;
    }

    // todo 先查询缓存,再校验是否一致,然后更新操作,比较实用,要清楚缓存的数据格式(明确业务和缓存模型数据)
    @Override
    @CachePut(value = "cache:all",unless = "null == #result",key = "#root.methodName")
    public List<CustomersEntity> cacheList2() {
        List<CustomersEntity> all = customerRepo.findAll();
        return all;
    }

}

4.3 扩展

基于spring缓存实现

Post Directory